WS 2016/17

Dr. Milena Pabiniak Marc Kegel

Symplectic Geometry

Homework 4

Exercise 1. (4 points)

Show that for the standard symplectic structure ω_0 on \mathbb{R}^{2n} and for any $A \in Gl(2n, \mathbb{R})$ it holds that

$$A^T J_0 A = J_0 \Leftrightarrow \omega_0(Au, Av) = \omega_0(u, v) \text{ for all } u, v \in \mathbb{R}^{2n}.$$

Exercise 2. (5 points) Write $A \in Gl(2n)$ as a block matrix

$$A = \left[\begin{array}{cc} A_1 & A_2 \\ A_3 & A_4 \end{array} \right],$$

with $A_j \in Mat(n \times n; \mathbb{R})$. Translate the condition $A \in Sp(2n)$ into conditions on A_j 's.

2

Exercise 3. (4 points) Show that if $A \in Sp(2n)$ then $A^T \in Sp(2n)$.

Exercise 4. (4 points) Recall the map $\Psi: Gl(n, \mathbb{C}) \to Gl(2n, \mathbb{R})$ defined by $X + iY \mapsto \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix}$. Show that for $A \in Gl(2n, \mathbb{R})$ it holds that

$$A \in \Psi(Gl(n,\mathbb{C})) \Leftrightarrow AJ_0 = J_0A.$$

Exercise 5. (4 points) Show that if $A \in O(2n) \cap Sp(2n)$ then $A \in \Psi(U(n))$.

Exercise 6. (4 points) Show that if $A \in Sp(2n)$ then $(AA^T)^{-\frac{1}{2}}A$ is orthogonal. (The fact that $(AA^T)^{-\frac{1}{2}}$ is well defined was shown in class, and so you don't need to re-prove it.) **Exercise 7.** (5 points)

Under what conditions on A does $(u, v) \mapsto u^T A v$ define an inner product? A symplectic form?

Exercise 8. (5 points)

For $X, Y \ n \times n$ real matrices, compare $\det(X + iY) \in \mathbb{C}$ and $\det \begin{bmatrix} X & Y \\ -Y & X \end{bmatrix} \in \mathbb{R}$.

Exercise 9. (5 points)

Fix n integers: k_1, \ldots, k_n . Find the Maslov index of a loop given by

$$\mathbb{R}/\mathbb{Z} \ni t \mapsto \begin{bmatrix} \cos(2\pi k_1 t) & \sin(2\pi k_1 t) \\ -\sin(2\pi k_1 t) & \cos(2\pi k_1 t) & \cdots & 0 \\ & & \ddots & & \\ 0 & & & \cos(2\pi k_n t) & \sin(2\pi k_n t) \\ & & & & -\sin(2\pi k_n t) & \cos(2\pi k_n t) \end{bmatrix} \in Sp(2n)$$

(i.e. the counterclockwise rotation of each \mathbb{R}^2 in \mathbb{R}^{2n} with speeds k_1, \ldots, k_n , respectively).

Hand in: Thursday November 17th in the exercise session in Übungsraum 1, MI