Symplectic Geometry

Homework 4

Exercise 1. (4 points)
Show that for the standard symplectic structure ω_{0} on $\mathbb{R}^{2 n}$ and for any $A \in G l(2 n, \mathbb{R})$ it holds that

$$
A^{T} J_{0} A=J_{0} \Leftrightarrow \omega_{0}(A u, A v)=\omega_{0}(u, v) \text { for all } u, v \in \mathbb{R}^{2 n}
$$

Exercise 2. (5 points)
Write $A \in G l(2 n)$ as a block matrix

$$
A=\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]
$$

with $A_{j} \in \operatorname{Mat}(n \times n ; \mathbb{R})$. Translate the condition $A \in S p(2 n)$ into conditions on A_{j} 's.

Exercise 3. (4 points)
Show that if $A \in S p(2 n)$ then $A^{T} \in S p(2 n)$.

Exercise 4. (4 points)
Recall the map $\Psi: G l(n, \mathbb{C}) \rightarrow G l(2 n, \mathbb{R})$ defined by $X+i Y \mapsto\left[\begin{array}{cc}X & Y \\ -Y & X\end{array}\right]$. Show that for $A \in G l(2 n, \mathbb{R})$ it holds that

$$
A \in \Psi(G l(n, \mathbb{C})) \Leftrightarrow A J_{0}=J_{0} A
$$

Exercise 5. (4 points)
Show that if $A \in O(2 n) \cap S p(2 n)$ then $A \in \Psi(U(n))$.

Exercise 6. (4 points)
Show that if $A \in S p(2 n)$ then $\left(A A^{T}\right)^{-\frac{1}{2}} A$ is orthogonal. (The fact that $\left(A A^{T}\right)^{-\frac{1}{2}}$ is well defined was shown in class, and so you don't need to re-prove it.)

Exercise 7. (5 points)
Under what conditions on A does $(u, v) \mapsto u^{T} A v$ define an inner product? A symplectic form?

Exercise 8. (5 points)
For $X, Y n \times n$ real matrices, compare $\operatorname{det}(X+i Y) \in \mathbb{C}$ and $\operatorname{det}\left[\begin{array}{cc}X & Y \\ -Y & X\end{array}\right] \in \mathbb{R}$.

Exercise 9. (5 points)
Fix n integers: k_{1}, \ldots, k_{n}. Find the Maslov index of a loop given by

$$
\mathbb{R} / \mathbb{Z} \ni t \mapsto\left[\begin{array}{cccc}
\cos \left(2 \pi k_{1} t\right) & \sin \left(2 \pi k_{1} t\right) & \ldots & 0 \\
-\sin \left(2 \pi k_{1} t\right) & \cos \left(2 \pi k_{1} t\right) & \cdots & \\
& & \ddots & \\
& & \cdots & \cos \left(2 \pi k_{n} t\right) \\
-\sin \left(2 \pi k_{n} t\right) & \sin \left(2 \pi k_{n} t\right) \\
\cos \left(2 \pi k_{n} t\right)
\end{array}\right] \in \operatorname{sp}(2 n)
$$

(i.e. the counterclockwise rotation of each \mathbb{R}^{2} in $\mathbb{R}^{2 n}$ with speeds k_{1}, \ldots, k_{n}, respectively).

